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Abstract

This paper deals with the curvature properties of a class of globally null manifolds(M, g) which
admit a global null vector field and a complete Riemannian hypersurface. Using the warped product
technique we study the fundamental problem of finding a warped function such that the degenerate
metricg admits a constant scalar curvature onM. Our work has an interplay with the static vacuum
solutions of the Einstein equations of general relativity.
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1. Introduction

Semi-Riemannian geometry is the study of smooth manifolds with non-degenerate metric
signature (see[11]). The principal special cases are Riemannian geometry, with a positive
definite metric, and Lorentz geometry, the mathematical theory used in general relativity
(see[3]). Since, for any semi-Riemannian manifold there is a natural existence of null
(light-like) subspaces, we refer[8] for a systematic local study on null curves, light-like
hypersurfaces and submanifolds of semi-Riemannian manifolds. However, very limited
is available on the global geometry of light-like (degenerate) manifolds. With this view
in mind, recently, the present author[7] introduced a class of light-like manifolds, called
globally null manifoldsM (seeDefinition 1) which admit a global null vector field and
a complete Riemannian hypersurface. The objective of this paper is to further study on
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globally null manifolds. InSection 2, we brief the basic information needed for the rest
of this paper. InSection 3, we show thatM can be seen as a warped product of a glob-
ally null manifold and a complete Riemannian manifold and conclude that its geome-
try essentially reduces to the Riemannian geometry of a leaf of its screen distribution.
This information is then used in finding the Ricci and the scalar curvatures ofM. We
study the fundamental problem of finding a warping function on the base manifold of
M such that its degenerate warped metricg admits a constant scalar curvature. For this
problem we restrict to the study of four-dimensional globally null manifolds and show,
by examples, that they have an interplay with some known solutions of the static vac-
uum Einstein equations and the event horizon or boundary of a black hole in general
relativity.

2. Globally null manifolds

Let (M, g) be a realn-dimensional smooth and paracompact manifold whereg is a
symmetric tensor field of type(0,2). The radical or the null space ofTx(M), denoted by
RadTx(M), is defined by

RadTx(M) = {ξx ∈ Tx(M); g(ξx,X) = 0, X ∈ Tx(M)}. (1)

The dimension, sayr, of RadTx(M) is called nullity degree ofg. RadTM is called the
radical distribution of rankr on M. Clearly,g is degenerate or non-degenerate onM iff
r > 0 or r = 0, respectively. We say that(M, g) is a light-like manifold[8] if 0 < r ≤ n.
Consider a complementary distributionS(TM) to RadTM in TM. We callS(TM) a screen
distribution onM whose existence is secured for paracompactM. It is easy to see that
S(TM) is semi-Riemannian and

TM = S(TM) ⊕ RadTM. (2)

Example 1. Consider the unit pseudo sphereS3
1 of Minkowski spaceR4

1 given by the
equation−t2 + x2 + y2 + z2 = 1. CutS3

1 by the hypersurfacet − x = 0 and obtain a
light-like surfaceM of S3

1 with RadTMspanned by a light-like vectorξ = ∂t +∂x . Consider
a screen distributionS(TM) spanned by a space-like vectorW = z∂y −y∂z. Then, we obtain
a light-like surfaceM, of rank 1, such thatTM is spanned by{ξ,W }.

In this paper, we assume thatr = 1. Thus, obviously RadTM is integrable. We need the
following results (proofs are available in[7]).

Theorem 1 (Duggal[7]). Let(M, g) be an n-dimensional light-like manifold withRadTM
of rankr = 1. Then, there exists a metric(Levi-Civita) connection∇ on M with respect to
the degenerate metric tensor g.

Definition 1 (Duggal[7]). A light-like manifold(M, g) is said to be a globally null manifold
if it admits a global null vector field and a complete Riemannian hypersurface.
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Example 2. Let (M̄, ḡ) be an(n + 1)-dimensional globally hyperbolic space–time, with
the line element of the metric̄g given by

ds2 = −dt2 + (dx1)2 + ḡab dxa dxb (a, b = 2, . . . , n) (3)

with respect to a coordinate system(t, x1, . . . , xn) on M̄. Choose the range 0< x1 < ∞
so that the metric(3) is non-singular. Take two null coordinatesu andv such thatu = t+x1

andv = t−x1. Thus,(3) transforms into a non-singular metric: ds2 = −dudv+ḡab dxaxb.
The absence of du2 and dv2 in this transformed metric implies that{v = constant} and
{u = constant} are light-like hypersurfaces ofM. Let (M, g, v = constant) be one of
this light-like pair and letD be the one-dimensional distribution generated by the null
vector {∂v}, in M̄. Denote byL the one-dimensional integral manifold ofD. A leaf M ′
of the (n − 1)-dimensional screen distribution ofM is Riemannian with metric dΩ2 =
ḡabx

axb and is the intersection of the two light-like hypersurfaces. In particular, there will
be many global time-like vector fields in globally hyperbolic space–timeM̄. If one is given
a fixed globaltime functionthen its gradient is a global time-like vector field in a given
M̄. With this choice of a global time-like vector field in̄M, we conclude that both its
light-like hypersurfaces admit a global null vector field. Now, the celebrated Hopf–Rinow
theorem allows to assume thatM ′ is a complete Riemannian hypersurface ofM. Thus,
there exists a pair of globally null hypersurfaces of a globally hyperbolic space–time. In
particular, a Minkowski space and a De-Sitter spaceM̄ have a pair of globally null hyper-
surfaces. Proceeding similar to above example for four-dimensionalM̄, one can show that
Robertson–Walker, Reissner–Nordström and Kerr space–times have pairs of globally null
hypersurfaces.

UsingTheorem 1, we construct an(n + 1)-dimensional Lorentz manifold(M̄, ḡ) with
coordinates(x1; xa, y), where(x1; xa, y = constant) are coordinates onM induced by
the foliation determined by RadTM and(y) is a coordinate on one-dimensional fibre of its
vector bundle structure. Thus,g is degenerate metric on a family of globally null manifolds
(M, g), induced by the Lorentz metric̄g of M̄. We use this structure to find a suitable Frenet
frame forM, along a null curveC in ann-dimensional globally null manifold(M, g), with
n > 1, given by

C : (x1(t), x2(t), . . . , xn(t), y(t) = a), t ∈ I ⊂ R (4)

for a coordinate neighbourhoodU onC. Then, the tangent vector field

d

dt
=
(

dx1

dt
, . . . ,

dxn

dt
,0

)

on U satisfiesg(d/dt,d/dt) = 0, where the scalar products are with respect to the
signature(− + . . .+) of ḡ. Denote byTC the tangent bundle ofC and consider a
class of null curves such that RadTM = TC and both are generated by the null vec-
tor field ξ . Let S(TM) be a complementary screen distribution to RadTM. Then, (2)
reduces to

TM = RadTM ⊕ S(TM) = TC⊕ S(TM). (5)
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Set d/dt = ξ . Since, byTheorem 1, ∇ is a metric connection onM (i.e.,∇g = 0), using
this and(5), we obtain the following equations:

∇ξ ξ = hξ,

∇ξW1 = −k1ξ + k3W2 + k4W3,

∇ξW2 = −k2ξ − k3W1 + k5W3 + k6W4,

∇ξW3 = −k4W1 − k5W2 + k7W4 + k8W5,

...

∇ξWn−2 = −kn−1Wn−4 − knWn−3 + kn+2Wn−1 + kn+3Wn,

∇ξWn−1 = −k2n−4Wn−3 − k2n−3Wn−2,

(6)

providedn ≥ 5, wherehand{k1, . . . , k2n−3}are smooth functions onU and{W1, . . . ,Wn−1}
is an orthonormal basis ofΓ (S(TM)U ). See[7] for three special cases when 1< n < 5. In
general, for anyn > 1, we call

F =
{

d

dt
= ξ,W1, . . . ,Wn−1

}
, (7)

a Frenet frame onM alongC with respect to the screen distributionS(TM). The functions
{k1, . . . , k2n−3) andEqs. (6)are called curvature functions ofC and Frenet equations for
F , respectively.

Remark 1. Since the Frenet frame(7) only involves the base vector fields onM and not of
any landing Lorentz manifold, it is a suitable frame to study global properties ofM, which
is our objective.

The following result was proved in[7] for any light-like manifold, with RadTM of rank
1, which also holds for a globally null manifold.

Proposition 1. Let C be a null curve of a globally null manifold(M, g), defined by Eq.(4).
Then, there exists a parameter p with respect to which C is null geodesic, generated by a
global null vector field.

Example 3. Consider a four-dimensional Minkowski space–timeR4
1, with a Lorentz metric

of signature(−+++). As explained in Example 2, let(M, g) be one of the pair of globally
null hypersurfaces ofR4

1. Consider a curveC in M defined byC : (p,−p, a1, a2), p ∈
I ⊂ R, wherea1 anda2 are suitable constants. Then, d/dp = (1,−1,0,0) is a null tangent
vector field, sayξ , of a null curveC of M. Moreover,∇ξ ξ = 0. Therefore,C is a null
geodesic ofM. Choose a Frenet frame{ξ,W1,W2} onM alongC where

W1 = (bp,−bp,1,0), W2 = (cp,−cp,0,1)

are orthonormal space-like vectors which generate a screen distribution ofM; b andc are
suitable constants. Following are the rest of two Frenet equations:

∇ξW1 = bξ + 0W2, ∇ξW2 = cξ + 0W1,

such that, for the special casen = 3, k1 = −b, k2 = −c, k3 = 0.
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In general, let(M, g) be a globally null hypersurface of a class of globally hyper-
bolic space–times (such as Schwarzchild, Robertson–Walker, Reissner–Nordström and Kerr
space–times). It is known[8] that, for this class of hypersurfaces, their respective screen
distribution is topologically a 2-sphereS2. It is easy to show that a null geodesic curve of
any one of such hypersurfacesM, projected to its screen distribution, is a great circle ofS2.

3. Warped product

In 1969, Bishop and O’Neill[5] introduced a class of warped product manifolds as
follows. Let (M1, g1) and(M2, g2) be two Riemannian manifolds,f : M1 → (0,∞) and
π : M1 × M2 → M1, η : M1 × M2 → M2 the projection maps given byπ(p, q) = p

and η(p, q) = q for every (p, q) ∈ M1 × M2. Denote the warped product manifold
M̄ = (M1 ×f M2, ḡ), where

ḡ(X, Y ) = g1(π�X,π�Y ) + (f ◦ π)2g2(η�X, η�Y ) (8)

for everyX andY of M̄, and� is symbol for the tangent map. They proved thatM̄ is a
complete Riemannian manifold iff bothM1 andM2 are complete Riemannian manifolds. In
particular, they constructed a large variety of complete Riemannian manifolds of everywhere
negative sectional curvature using warped products. In 1980, Beem–Ehrlich[3] proved that
the Lorentzian warped product̄M is globally hyperbolic if and only ifM1 is globally
hyperbolic andM2 is a complete Riemannian manifold. Using warped product, they did
an extensive global study on causal and completeness properties of Lorentz manifolds.
Motivated by very effective use of warped products in the global study of Riemannian and
Lorentzian geometry, we introduce a new class ofproducts in light-like geometryas follows.

Let (N, gN) and(F, gF ) be a light-like and a Riemannian manifold of dimensionsn and
m, respectively, where the RadTN is of rankr. Letπ : N × F → N andη : N × F → F

denote the projection maps given byπ(x, q) = x andη(x, q) = q for (x, q) ∈ N × F ,
respectively, where the projectionπ on N is with respect to the non-degenerate screen
distributionS(TN).

Definition 2. The product manifoldM = N × F is said to be a light-like warped product
N ×f F , with the degenerate metricg defined by

g(X, Y ) = gN(π�X,π�Y ) + (f ◦ π)2gF (η�X, η�Y ) (9)

for everyX, Y of M, and� is the symbol for the tangent map.

It follows that RadTM of M still hasrankr but dim(M) = n + m and dim(S(TM)) =
n + m − r. In particular, ifN is a globally null manifold andF is a complete Riemannian
manifold, then we have the following result (the proof is similar to the proof of Theorem 3
in [7]).

Theorem 2. LetM = (N ×f F, g) be a light-like warped product manifold of a globally
null manifold(N, gN) and a complete Riemannian manifold(F, gF ) of dimensions n and
m, respectively. Then, the following assertions are equivalent
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(a) The screen distributionS(TM) is integrable.
(b) M = L × M ′ is a global null product manifold, where L isa one-dimensional inte-

gral manifold of the global null curve C in M and(M ′, g′) is a complete Riemannian
hypersurface of M which is a triple warped product

M = L × B ×f F, M ′ = (B ×f F, g′), (10)

where(B, gB) is a complete Riemannian hypersurface ofN = L × B.
(c) S(TM) is parallel with respect to the metric connection on M.

Example 4. Let Rd+1
1 be a Lorentz space with the metricg̃ given by

g̃(x, y) = −x0y0 +
d∑

i=1

xiyi

with respect to a coordinate system(xo, . . . , xd). Consider a smooth functionf : D → R,
whereD is an open set ofRd . Then

M = {(x0, . . . , xn ∈ Rd+1
1 ; x0 = f (x1, . . . , xd)}, (11)

is a hypersurface ofRd+1
1 which is called aMonge hypersurface. Let natural parameteriza-

tion onM be given by

x0 = f (v0, . . . , vd−1), xα+1 = vα, α ∈ {0, . . . , n − 1}.
Hence, the natural frames field onM is globally defined by

∂vα = f ′
xα+1∂x0 + ∂xα+1, α ∈ {0, . . . , d − 1}.

Then, it follows thatTM⊥ is spanned by a global vector

ξ = ∂x0 +
d∑

i+1

f ′
xi
∂xi . (12)

We know from(1) thatM is light-like if and only if TM⊥ = RadTM. This means thatξ ,
defined by(12), is a null vector field. Hence, we may state

Proposition 2. A Monge hypersurface M, given by(11), is light-like if and only if the
function f is a solution of the differential equation

∑d
i=1(f

′
xi
)2 = 1.

Proposition 3. The screen distribution of a light-like Monge hypersurface M ofRd+1
1 , given

by (11), is integrable.

Proof. Choose a null transversal vector field (which is not tangent toM) given byV =
(1/2){−∂x0 + ∑d

i=1 f
′
xi
∂xi }. It follows thatg(ξ, V ) = 1. Let ∇̄ be the Levi-Civita con-

nection, with respect to the Minkowski metric̄g, on Rd+1
1 . Then, for any two vectors

X, Y ∈ Γ (S(TM)), the Lie bracket [X, Y ] ∈ Γ (S(TM)). Indeed

ḡ([X, Y ], V ) = ḡ(∇̄XY − ∇̄YX, ∂x0) = −{ḡ(X, ∇̄Y ∂x0) − ḡ(Y, ∇̄X∂x0)} = 0.

Hence,S(TM) is integrable which completes the proof. �
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To relate above example with this section, we letRd+1
1 admit a globally defined time-like

vector field, which means it is a time orientable Minkowski space–time. This further means
thatRd+1

1 is a globally hyperbolic space–time. ByProposition 3, with the equivalent asser-
tions (a) and (b) ofTheorem 2, we conclude thatM = L × M ′ is aglobally null Monge
hypersurfaceof a Minkowski space–timeRd+1

1 , whereM ′ is a complete Riemannian man-
ifold. Furthermore,M can be seen as a triple warped product manifold, as explained above,
if we setd = n + m.

The Ricci tensor ofM is Ric(X, Y ) = trace{Z → R(X,Z)Y }, for vector fieldsX, Y,Z

of M, whereR(X,Z)Y is the curvature tensor ofM. With respect to a natural frames field
{ξ = ∂x0, ∂x1, . . . , ∂xn−1}, we have

Ric(X, Y ) = gabg(R(∂xa , X)∂xb , Y ) (a, b = 1, . . . , n − 1)

= Ric′(X′, Y ′),
(13)

where Ric′ denotes the Ricci tensor ofM ′ andX′, Y ′ ∈ M ′. In terms of a quasi-orthonormal
Frenet frame{ξ,W1, . . . ,Wn−1} along a null curveC (seeEq. (7)), the degenerate metric
g and(13)are expressed by

g(X, Y ) =
n−1∑
a=1

g(X,Wa)g(Y,Wa),

Ric(X, Y ) =
n−1∑
a=1

g(R(Wa,X)Wa, Y ) = Ric′(X′, Y ′). (14)

Using(13)andTheorem 2, we have the following important result.

Proposition 4. Let (M, g) be a globally null manifold, withM ′ its complete Riemannian
hypersurface. Then, the metric g and the Ricci tensor of M can be determined from a set of
data specified entirely onM ′. Also, M andM ′ have same Ricci tensors. Moreover, if M is a
globally null warped product manifold, then the geometry of M reduces to the Riemannian
geometry of its warped product hypersurfaceM ′ = (B ×f F, g′), as defined by(10).

For example, letM be a globally null Monge hypersurface, defined by(11), of a Minkowski
space–timeRd+1

1 . Following two results hold (for proof see[8] whereR4
1 case is discussed

since the general case is very lengthy).

(a) LetM ′ be any leaf of the screen distribution ofM andR, R′ the curvature tensors of
M andM ′, respectively. Then,R = (1/2)R′.

(b) M is (1) flat, (2) totally geodesic, (3) totally umbilical, (4) minimal if and only ifM ′ is
so immersed as a submanifold ofRd+1

1 .

In other words,M ′ is an invariant hypersurface ofM. This means that any tensor (in-
cluding the degenerate metricg) or geometric object onM can be determined from a set of
data specified entirely on its Riemannian hypersurfaceM ′. Thus, one can essentially do all
the analysis on the complete Riemannian hypersurfaceM ′ of M. Moreover, we have

(1) The null leavesN × q, q ∈ F , of warped productM, can be induced to the space-like
leavesB × q, and are totally geodesic inM.
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(2) The fibres(p0, p) × F , p0 ∈ L andp ∈ B can be induced to the space-like fibres
p × F , and are totally umbilical inM.

(3) For each(p, q) ∈ M ′, the induced leafB×q and the induced fibrep×F are orthogonal
at (p, q).

(4) The gradient of the lifth ◦π of a smooth functionh ∈ N is the lift toM of the gradient
of h on its induced Riemannian manifoldB.

In general, for a covariant tensorT ∈ N , its lift T̄ ∈ M is the pullbackπ�(T ) under the
mapπ : M → B ⊂ N . This is why, even if the metricgN ofN is degenerate, all tensors and
geometric objects and their pullback are with respect to the induced Riemannian metricgB
ofB. The vectors tangent to leaves and fibres are calledhorizontalandvertical, respectively.
The lift toM of the Hessian of a smooth functionf onN , denoted byHf , agrees with the
Hessian of the liftf ◦ π on the horizontal vectors ofB. We denote RicB for the pullback
by π of Ric′ and similarly for RicF .

Proposition 5. LetM = L × B ×f F be an(n + m)-dimensional triple warped product
manifold withdim(F ) = m > 1. Then

(1) Ric(ξ, ξ) = Ric(ξ,X) = Ric(X,U) = 0, ξ ∈ L,
(2) Ric(X, Y ) = Ric′(X, Y ) = RicB(X, Y ) − (m/f )Hf (X, Y ),
(3) Ric(U, V ) = RicF (U, V ) − 〈U,V 〉{7f/f + (m − 1)〈∇f,∇f 〉/f 2},
where7f = trace(Hf ) is the Laplacian of f, ∇f = grad(f ), X, Y horizontal and U,V
vertical vector fields.

Proof. UseProposition 4and follow Corollary 7.43 in[11]. �

We use the following identifications ofTx(M) for anyx = (p0, p, q) ∈ M.

Tx(L × B ×f F )
∼= Tx(L × B × F)

∼= Tp0(L) × Tp(B) × Tq(F ),

Tx(L × B ×f F )
projected−−−−−−→ T(p,q)(B ×f F )

∼= T(p,q)(B × F)

A Frenet frame{ξ,W1, . . . ,Wn−1} onT(p0,p)N (seeEq. (7)) is identified to an orthonormal
basis{Wa} (a = 1, . . . , n − 1) onTpB. Any horizontal vectorX(p0,p,q) ∈ M is identified
to a horizontal vector̄Xp,q = (Xp,0q) ∈ B. Similar notations follow for vertical vectors
and tensors. We denoteSB the pullback byπ of the scalar curvature ofB and similar for
SF . For the degenerate metricg, at a pointx = (p0, p, q) ∈ M, we have

gx
projected−−−−−−→ g′

(p,q) = (gp, gq), ḡB(p,q) = (gp,0q), gF(p,q) = (0p, gq),

whereg′, gB andgF are Riemannian metrics onM ′, B andF , respectively.

Proposition 6. Suppose S is the scalar curvature of a triple warped product manifold
M = L × B ×f F , with dim(F ) = m > 1. Then

S = S′ = SB + SF

f 2
− 2m

7f

f
− m(m − 1)

〈∇f,∇f 〉
f 2

, (15)

whereS′ is the induced scalar curvature ofM ′ = (B ×f F, g′).
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Proof. Let {ξ ;Wa} be a pseudo-orthonormal basis forT(p0,q)(L × B) so that{Wa} is an
orthonormal basis forTpB. Then, by isomorphism,{W̄a = (Wa,0q)} is an orthonormal set
in T(p,q)(B ×f F ). Choose a set{Wi} of m vectors onTqF such that{ξ̄ ; W̄a; W̄i} forms
a pseudo-orthonormal basis forT(p0,p,q)

M. Thus,{W̄a; W̄i} is an orthonormal basis for
T(p,q). Since

gF (W̄i, W̄i) = f 2(Wi,Wi) = gF (f Wi , f Wi ) = 1,

we conclude that{fWi} is an orthonormal basis forTqF . UsingProposition 3, for eacha
and eachi, we get

Ric(W̄a, W̄a) = Ric′(W̄a, W̄a) = RicB(W̄a, W̄a) − m

f
Hf (W̄a, W̄a),

Ric(W̄i, W̄i) = RicF (W̄i, W̄i) − f

[
7f + (m − 1)

〈∇f,∇f 〉
f

]

Hence, usingg(ξ, ξ) = 0, g(Wa,Wa) = g(Wi,Wi) = 1, we get

S(p0, p, q)
projected−−−−→S′(p, q) = Rαα (2 ≤ α ≤ n + m)

= Ric(W̄a, W̄a) + Ric(W̄i, W̄i)

= SB + SF

f 2
− 2m

7f

f
− m(m − 1)

〈∇f,∇f 〉
f 2

. �

4. Constant scalar curvature

In this section, we deal with the following fundamental problem.
Given a fibre F, of M, with constant scalar curvature, find a warping function f on its

base manifoldL × B such that the degenerate warping metric g admits a constant scalar
curvature onM = (L × B ×f F, g).

We restrict to dim(M) = n = 4 since this case has an interplay with some known exact
solutions of the static vacuum Einstein equations and the event horizon or boundary of a
black hole in general relativity. For this case, either (1) dim(B) = 1 and dim(F ) = 2 or
(2) dim(B) = 2 and dim(F ) = 1. We deal with both these subcases separately. Using
the material of previous two sections, we first work on the Riemannian warped product
manifold(M ′, g′) and then show how to glueg′ with the degenerate metricg of M.

Case 1. dim(B) = 1 and dim(F ) = 2.

Theorem 3. LetM = (L×B×f F, g) be afour-dimensional globally null warped product
manifold,B = (a, b) an open connected subset of real line with positive definite metricdr2

and−∞ ≤ a < b ≤ +∞ and the fibre space F be of constant scalar curvaturec �= 0.
Then, g admits the following warping functionsf (r) for which M has a constant scalar
curvature k.

(i) k > 0, f (r) =
√

3c
k

[
tan2

(
± ( k6)1/2

r + c1

)
+ 1

]−1/2
, c > 0,
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(ii) k = 0, f (r) = ±
(√

c
2

)
r + c1, c > 0,

(iii) k < 0, f (r) = c1 exp

(√
−k
6 r

)
− 3c

4c1k
exp

(
−
√

−k
6 r

)
,

wherec1 is a constant such thatf (r) is real and positive.

Proof. Let f (r) = u2/3. Then,7f = f ′′ and〈∇f,∇f 〉 = (f ′)2. Using this withSB =
0, SF = c andS = k in (15), we obtain

u′′ + 3
8ku− 3

8cu−1/3 = 0. (16)

Letu′ = y so that dy/dr = u′′. Using this in(16), separating variables and then integrating
both sides, we obtain

y = ±(3/8)1/2u
√

3cu−4/3 − k = du

dr
.

Therefore:

du

u
√

3cu−4/3 − k
= ±

(
3

8

)1/2

dr.

Following are three cases of the integral of above equation:

k > 0, v2 = k tan2

(
±
(
k

6

)1/2

r + c1

)
, k = 0, f (r) = ±

(√
c

2

)
r + c1,

k < 0, ln

∣∣∣∣∣v − √−k

v + √−k

∣∣∣∣∣ = ±
(

−k

6

)1/2

r,

where we setv2 = 3cu−4/3 − k. From above three equations the results of this theorem
follow easily for the case of Riemannian warped product manifold(M ′, g′). To complete
the proof, we now show how to glueg′ with the degenerate metricg of M. It follows from
theProposition 4that the scalar curvatures ofM ′ andM are same. The warping function
fp ∈ B can be glued with the warping functionf(p0,p) = (0p0, fp) ∈ L × B. Based on
information fromSection 2, the Riemannian metricg′ can be glued with the degenerate
metricg, of M, as follows:

g =
(
O1,1 O1,3

O3,1 g′

)
,

whereg′(X, Y ) = gB(π�X,π�Y ) + (f ◦ π)2gF (η�X, η�Y ). �

Corollary. If c = 0, then following are the warping functionsf (r) for which M has a
constant scalar curvature k.

(i) k > 0, f (r) =
[
c1 cos

(√
3k
8 r

)
+ c2 sin

(√
3k
8 r

)]2/3

,
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(ii) k = 0, f (r) = (c1r + c2)
2/3,

(iii) k < 0, f (r) =
[
c1 exp

(√
−3k

8 r

)
+ c2 exp

(
−
√

−3k
8 r

)]2/3

,

wherec1 andc2 are constants such thatf (r) is real and positive.

Physical model 1. Let M = (L × M ′, g) be a four-dimensional globally null manifold,
with (M ′, g′) its complete space-like hypersurface. Also, let(M̃, g̃) be a four-dimensional
globally hyperbolic space–time manifold of general relativity. By definition,M̃ has a com-
plete space-like hypersurfaceH (calledCauchy surface) such thatM̃ = R × H . In the
following we show, by means of a physical example, thatH is a warped product manifold
of Case 1, and the set{M,M ′, M̃} of these three manifolds has the following interplay.

(M, g) ⊃ (M ′ = B ×f F, g′) ⊂ (M̃ = R × H, g̃), (17)

where(H = B ×
f̃
F, gH ) andf̃ is a warping function onR × B.

Example 5. Let (M̃, g̃) be the Schwarzschild space–time with the metric

g̃ = −A(r)dt2 + A−1(r)dr2 + r2 dΩ2
s2, A(r) = 1 − 2mr−1 > 0,

whereS2 is totally geodesic 2-sphere of radius 2m andm is positive mass. This metric rep-
resents the most important non-trivial solution of the static vacuum Einstein field equations.
It is well known thatM̃ is a globally hyperbolic manifold[3]. To relate this withEq. (17),
we consider the following conformal deformation metricḡH defined by

ḡH = A(r)gH = dr2 + A(r)r2 dΩ2
s2.

If we setB a one-dimensional space with metric dr2 andS2 a two-dimensional fiber space
F of M̃, then using(17)we conclude that the Schwartzchild space–timeM̃ has a complete
Cauchy hypersurface

(H̄ = B ×f̄ F, ḡH ), f̄ = f̃
√
A(r),

and it has an interplay with a four-dimensional globally null manifoldM. It is well known
that static solutions of space–times are closely connected with an open Riemannian 3-mani-
fold containing a 2-sphere, occurring at the event horizon or the boundary of a black hole in
general relativity. This physical relation is apparent in above example and, more generally,
in many solutions of the static vacuum equations of asymptotically flat space–times, which
have 2-spheres near infinity. Relevant to this paper, we have further demonstrated, through
Eq. (17), that 2-sphere can act as a common link between the three manifoldsM,M ′ and
M̃, relating the geometries of globally null and the globally hyperbolic manifolds. Finally,
to relate this example withTheorem 3, consider the casek = 0 (others are similar) so that

f (r) = ±
(√

c

2

)
r + c1.

In this example,F = S2 whose scalar curvature is 1/4m2 and

f̄ = r
√

1 − 2mr−1.
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Matchingf = f̄ , andc = 1/4m2, we obtain

(1 − 8m2)r2 + (16m3 ± 4
√

2mc1)r + 8mc21 = 0,

wherec1 is such thatr has real solutions from above equation.

Remark 2. For similar study on higher dimensional Riemannian and semi-Riemannian
warped product manifolds, we suggest the works of Dobarro–Dozo[6] and Ehrlich et al.
[9], respectively.

Case 2. dim(B) = 2 and dim(F ) = 1.
Here we follow Yamabe[12] for the existence of constant curvature metrics on a three-

dimensional compact Riemannian manifold(M ′ = B ×f F, g′), with dim(B) = 2, and,
then follow Anderson’s[1] recent work on their relation with the static vacuum Einstein
equations. We study two specific subcases and glue the degenerate metricg of (M =
L × M ′, g) with g′. Denote byM the space of all smooth Riemannian metrics onM ′
andM1 ⊂ M of metrics satisfying volg′M ′ = 1. Define the total scalar curvature or
Einstein–Hilbert actionS : M ′ → R by

S(g′) = v−1/3
∫
M ′

SM ′
dVg′ , (18)

whereSM ′
is the scalar curvature ofM ′, dVg′ the volume element andv the volume ofM ′.

The critical points ofS areEinstein metrics. Moreover, only in dimension 3 these Einstein
metrics are of constant scalar curvature. There is a well known procedure to obtain Einstein
manifolds. Following Yamabe[12], suppose [g′] is a conformal class of any metricg′ ∈
M1. Then there exists a metric̄g ∈ M1 which achieves its infimumµ[g′] ≡ S|[g′]∩M1.
Such metrics are calledYamabe metrics. However, there are restrictions on the existence of
Yamabe metrics. Denote byσ(M ′) = sup(µ[g′])C1, whereC1 is the subset of unit volume
Yamabe metrics. Ifσ(M ′) ≤ 0, it has been proved by Besse[4] that any Yamabe metric
g0 ∈ C1 such thatSM ′

g0
= σ(M ′) is Einstein. Otherwise, this problem still remains open.

Under these restrictions, it is reasonable to say that there exists a four-dimensional globally
null manifoldM whose three-dimensional compact Riemannian hypersurface(M ′, g′) is
an Einstein manifold with a constant curvaturek andg′ is a Yamabe metric. Then, it follows
from Proposition 4thatM is also of constant scalar curvaturek. Now we show, that for two
specific subcases, ofCase 2, there exists a warping functionf on the base manifoldB of
(M ′ = B ×f F, g′), such that the metricg has a constant scalar curvature onM.

Subcase (i). M ′ = S3 andF = S1.
Let{g′

i} be a maximum sequence of unit volume Yamabe metrics onM ′. It has been shown
by Anderson[1] that the degenerations of such a sequence are described by solutions to
the static vacuum Einstein equations. Consider a specific class of such solutions, known as
Weyl solutions, where(M ′, g′) is a warped product ofCase 2and

M ′ = B ×f S1, g′ = gB + f 2 dθ2, (19)

where(B, gB) is a Riemannian surface (see[2] for details) andf is a positive function
on B. Let there be symmetry onB such thatf = f (r) with respect to a coordinate
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system(r, φ) at any pointp ∈ B. This is possible, in particular, if we setM ′ = S3 so
thatB is a two-dimensional solid torus. Then,S3 can be seen as the union of two solid
tori B × S1, glued along the torus boundary∂(B) by interchanging the two circles in
∂(B). Assume that outside a compact set,g′ is isometric to a rank 2 hyperbolic cusp,
so that in particular,f = f (r) = e−r for large r of S2. For the existence of such a
metric g′ see Theorem 4.32 in[4]. Anderson[1] has shown that such a warped product
metric g′ is invariant under theS1 action onB × S1 and the scalar curvature ofM ′ is
−6. Therefore, based ofProposition 2, the scalar curvature of the globally null manifold
M is also−6 and its degenerate metricg can be glued with the Riemannian metricg′ as
explained in the proof ofTheorem 4. Furthermore, there are conditions (discussed in[1]),
under which the degeneration corresponds to non-trivial vacuum solutions of the Einstein
equations of four-dimensional space–time manifolds of general relativity. Examples are
several asymptotically flat space–times (including the Schwarzchild space–time) which
have 2-spheres near infinity. Thus, we have the following physical model forCase 2.

Physical model 2. Let M = (L × M ′, g) be a four-dimensional globally null manifold,
with (M ′, g′) a warped product ofCase 2and of the form(19), such thatM ′ = S3 andB
is a solid torus. Also, let(M̃, g̃) be a class of asymptotically flat space–times which have
2-spheres near infinity. Then, the set of these three manifolds{M,M ′, M̃} has the following
interplay

(M, g) ⊃ (S3 ×f S1, g′) ⊂ (M̃, g̃),

whereM̃ can have a suitable warped product structure.

Subcase (ii). SF = 0 onF .

Theorem 4. LetM = (L×B×f F, g) be afour-dimensional globally null warped product
manifold, (B, gB) a Riemannian surface with scalar curvatureSB andF = (a, b) an open
connected subset of real line with positive definite metricdx2 and−∞ ≤ a < b ≤ +∞.
Then, the metric g admits infinitely many warped functions for which M has constant scalar
curvature.

Proof. Following Ehrlich et al.[9], we letH1,2(B) denote the Sobolev space of functions
on B whose first order derivatives are in the norm spaceL2(B) andL is the differential
operator onH(B) such thatL(f ) = −7f + (1/2)SBf . Consider the first eigenvalueλ on
L given by

λ = minf �=0∈H(B)

∫
B

fL(f )dV∫
B
f 2 dV

= minf �=0∈H(B)

∫
B

|7f |2 dV + (1/2)
∫
B
SBf 2 dV∫

B
f 2 dV

.

Setλ = (1/2)k̄. Then

L(f ) = λf = 1
2 k̄f (20)

implies thatf is a eigenvalue function of the operatorL. Kazdan–Warner[10] have shown
that such an eigenfunction is never zero, positive and smooth. Thus, we assume that
f > 0 onB. Finally, it follows from Eq. (15), with dim(F ) = m = 1, SF = c = 0
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and above that

7f + 1
2(k̄ − SB)f = 0.

Therefore, there exists a warped functionf such that the warped metricg′, of M ′, has
the constant scalar curvaturek̄. It follows from (20) that if f is an eigenfunction, thenaf is
also an eigenfunction for any real positive numbera. Thus, there are infinitely many warped
metrics all of which have constant scalar curvaturek̄. Finally, based onProposition 4, k̄ is
also scalar curvature of the globally null manifoldM and its degenerate metricg can be
glued with the Riemannian metricg′ as explained in the proof ofTheorem 3. �
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