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Abstract

This paper deals with the curvature properties of a class of globally null manif#ldg) which
admit a global null vector field and a complete Riemannian hypersurface. Using the warped product
technique we study the fundamental problem of finding a warped function such that the degenerate
metricg admits a constant scalar curvaturednOur work has an interplay with the static vacuum
solutions of the Einstein equations of general relativity.
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1. Introduction

Semi-Riemannian geometry is the study of smooth manifolds with non-degenerate metric
signature (sefl1]). The principal special cases are Riemannian geometry, with a positive
definite metric, and Lorentz geometry, the mathematical theory used in general relativity
(see[3]). Since, for any semi-Riemannian manifold there is a natural existence of null
(light-like) subspaces, we refg8] for a systematic local study on null curves, light-like
hypersurfaces and submanifolds of semi-Riemannian manifolds. However, very limited
is available on the global geometry of light-like (degenerate) manifolds. With this view
in mind, recently, the present authi@j introduced a class of light-like manifolds, called
globally null manifoldsM (seeDefinition 1) which admit a global null vector field and
a complete Riemannian hypersurface. The objective of this paper is to further study on
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globally null manifolds. InSection 2 we brief the basic information needed for the rest
of this paper. InSection 3 we show thatM can be seen as a warped product of a glob-
ally null manifold and a complete Riemannian manifold and conclude that its geome-
try essentially reduces to the Riemannian geometry of a leaf of its screen distribution.
This information is then used in finding the Ricci and the scalar curvaturdg.oiVe

study the fundamental problem of finding a warping function on the base manifold of
M such that its degenerate warped megriadmits a constant scalar curvature. For this
problem we restrict to the study of four-dimensional globally null manifolds and show,
by examples, that they have an interplay with some known solutions of the static vac-
uum Einstein equations and the event horizon or boundary of a black hole in general
relativity.

2. Globally null manifolds

Let (M, g) be a realrn-dimensional smooth and paracompact manifold wheie a
symmetric tensor field of typ€, 2). The radical or the null space @f (M), denoted by
RadT, (M), is defined by

Rad7, (M) = {&x € Tx(M); g(¢x, X) =0, X € T (M)}. @)

The dimension, say, of Rad7, (M) is called nullity degree of. RadTM is called the
radical distribution of rank on M. Clearly, g is degenerate or non-degenerateMdriff

r > 0 orr = 0, respectively. We say tha, g) is a light-like manifold[8] if 0 < r < n.
Consider a complementary distributi§idTM) to RadTM in TM. We call S(TM) a screen
distribution onM whose existence is secured for paracompdctt is easy to see that
S(TM) is semi-Riemannian and

T™ = S(TM) & RadTM. )

Example 1. Consider the unit pseudo sphe?% of Minkowski spaceR‘l‘ given by the
equation—r2 + x2 + y? + z2 = 1. CutS3 by the hypersurface — x = 0 and obtain a
light-like surfaceM of Sf with RadTM spanned by a light-like vectgr= 9, + d,. Consider
ascreen distributiofi(TM) spanned by a space-like vecir= zd, — yd,. Then, we obtain
a light-like surfaceM, of rank 1, such thatM is spanned by¢, W}.

In this paper, we assume that= 1. Thus, obviously RadM is integrable. We need the
following results (proofs are available [A]).

Theorem 1 (Duggal[7]). Let(M, g) be an rdimensional light-like manifold witRadTM
of rankr = 1. Then, there exists a metrftevi-Civita) connectionv on M with respect to
the degenerate metric tensor g

Definition 1 (Duggal[7]). Alight-like manifold(M, g) is saidto be a globally null manifold
if it admits a global null vector field and a complete Riemannian hypersurface.
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Example 2. Let (M, g) be an(n + 1)-dimensional globally hyperbolic space-time, with
the line element of the metrijg given by

ds? = —dr? + (dxH)? + gapdx®dx® (@, b=2,...,n) (3)

with respect to a coordinate systémx?, ..., x") on M. Choose the range @ x! < oo

so that the metri¢3) is non-singular. Take two null coordinatesandv such that: = ¢ +x?!

andv = r—x1. Thus,(3) transforms into a non-singular metric:= —du dv+ gap dxx”.

The absence ofuf and d? in this transformed metric implies th& = constant and

{u = constan} are light-like hypersurfaces o¥f. Let (M, g, v = constant be one of

this light-like pair and letD be the one-dimensional distribution generated by the null
vector{d,}, in M. Denote byL the one-dimensional integral manifold &f. A leaf M’

of the (n — 1)-dimensional screen distribution 8f is Riemannian with metric @2 =
gabx?x? and is the intersection of the two light-like hypersurfaces. In particular, there will
be many global time-like vector fields in globally hyperbolic space—thhéf one is given

a fixed globaltime functionthen its gradient is a global time-like vector field in a given
M. With this choice of a global time-like vector field i, we conclude that both its
light-like hypersurfaces admit a global null vector field. Now, the celebrated Hopf—Rinow
theorem allows to assume that’ is a complete Riemannian hypersurfaceMf Thus,
there exists a pair of globally null hypersurfaces of a globally hyperbolic space—time. In
particular, a Minkowski space and a De-Sitter spat@ave a pair of globally null hyper-
surfaces. Proceeding similar to above example for four-dimensidnahe can show that
Robertson—Walker, Reissner—Nordstrom and Kerr space—times have pairs of globally null
hypersurfaces.

Using Theorem 1 we construct arin + 1)-dimensional Lorentz manifoldM, g) with
coordinatesx®; x?, y), where(x!; x%, y = constant are coordinates o induced by
the foliation determined by RakM and(y) is a coordinate on one-dimensional fibre of its
vector bundle structure. Thusjs degenerate metric on a family of globally null manifolds
(M, g), induced by the Lorentz metricof M. We use this structure to find a suitable Frenet
frame forM, along a null curve® in ann-dimensional globally null manifoldM, g), with
n > 1, given by

C:(xY@), x%(t),....x"(t),y(t) =a), telCR (4)

for a coordinate neighbourhodfion C. Then, the tangent vector field

d dx?® dx" 0

dr — \de 777 de
on U satisfiesg(d/dt, d/dtr) = 0, where the scalar products are with respect to the
signature(— + ...+) of g. Denote byTC the tangent bundle o€ and consider a
class of null curves such that R&l = TC and both are generated by the null vec-

tor field &. Let S(TM) be a complementary screen distribution to Rd Then, (2)
reduces to

TM = RadTM & S(TM) = TC @ S(TM). (5)
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Set gdr = &. Since, byTheorem 1V is a metric connection o (i.e., Vg = 0), using
this and(5), we obtain the following equations:

Ve = hé,
VeWr = —ki§ + kaWo + kaWs,
VeWo = —ko§ — kaWi1+ ksW3 + kgWa,
VEW3 = —kaW1— ksWo + kyWa + kgWs, (6)
VeWn2 = —kp_aWya—kaWy_3+knioWy_1+ kni3Wy,
VeWy1 = —kop-aWy_3— ko 3W, 2,
providedn > 5,whereiand{ky, ..., k2,_3} are smooth functions ot and{W4, ..., W,,_1}

is an orthonormal basis df (S(TM);,). Se€[7] for three special cases when<n < 5. In
general, for any: > 1, we call

d
F:{E:s,wl,...,w,,_l}, (7)

a Frenet frame oM alongC with respect to the screen distributi®iGTM). The functions
{k1, ..., koy,—3) andEgs. (6)are called curvature functions ¢f and Frenet equations for
F, respectively.

Remark 1. Since the Frenet fram@) only involves the base vector fields dfand not of
any landing Lorentz manifold, it is a suitable frame to study global propertiés, fhich
is our objective.

The following result was proved if7] for any light-like manifold, with Rad'M of rank
1, which also holds for a globally null manifold.

Proposition 1. Let C be a null curve of a globally null manifold/, g), defined by Eq4).
Then, there exists a parameter p with respect to which C is null geodesic, generated by a
global null vector field

Example3. Consider afour-dimensional Minkowski space—tine with a Lorentz metric
of signaturg — +++). As explained in Example 2, 1€}, g) be one of the pair of globally
null hypersurfaces oR‘l‘. Consider a curv&€ in M defined byC : (p, —p,a1,a2), p €
I C R, wherea; anday are suitable constants. Therigg = (1, —1, 0, 0) is a null tangent
vector field, say, of a null curveC of M. Moreover,V:¢é = 0. Therefore( is a null
geodesic off. Choose a Frenet franfé, W1, W} on M alongC where

Wl = (bpv _bp’ 17 O)’ W2 = (Cp9 _va O, 1)

are orthonormal space-like vectors which generate a screen distributdniotindc are
suitable constants. Following are the rest of two Frenet equations:

Ve W1 = b€ + 0W>, VeWo = c& + 0Wq,

such that, for the special cage= 3,k1 = —b, ko = —c, k3 = 0.
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In general, let(M, g) be a globally null hypersurface of a class of globally hyper-
bolic space-times (such as Schwarzchild, Robertson—Walker, Reissner—Nordstrom and Kerr
space-times). It is knowf8] that, for this class of hypersurfaces, their respective screen
distribution is topologically a 2-sphet#. It is easy to show that a null geodesic curve of
any one of such hypersurfackg projected to its screen distribution, is a great circl§of

3. Warped product

In 1969, Bishop and O’Neil[5] introduced a class of warped product manifolds as
follows. Let (M1, g1) and(Ma, g2) be two Riemannian manifoldg, : M; — (0, co) and
T M1 x My — M1, n: My x M, — M the projection maps given by(p,q) = p
andn(p,q) = q for every (p,q) € M1 x M». Denote the warped product manifold
M = (M1 x y Mo, ), where

(X, Y) = g1(ma X, wx¥Y) + (f 0 7)2g2(nx X, 1% ¥) (8

for every X andY of M, andx is symbol for the tangent map. They proved thatis a
complete Riemannian manifold iff botf; andM> are complete Riemannian manifolds. In
particular, they constructed a large variety of complete Riemannian manifolds of everywhere
negative sectional curvature using warped products. In 1980, Beem-HBilmoved that
the Lorentzian warped produdt is globally hyperbolic if and only ifM; is globally
hyperbolic andM> is a complete Riemannian manifold. Using warped product, they did
an extensive global study on causal and completeness properties of Lorentz manifolds.
Motivated by very effective use of warped products in the global study of Riemannian and
Lorentzian geometry, we introduce a new claggroflucts in light-like geometrgs follows.

Let (N, gny) and(F, gr) be alight-like and a Riemannian manifold of dimensiarand
m, respectively, where the RaiN is of rankr. Letr : N x F - Nandn: N x F — F
denote the projection maps given hyx, ¢g) = x andn(x,q) = ¢ for (x,q) € N x F,
respectively, where the projection on N is with respect to the non-degenerate screen
distributionS(TN).

Definition 2. The product manifoldd = N x F is said to be a light-like warped product
N x ¢ F, with the degenerate metricdefined by

(X, Y) = gn(ma X, 4 ¥) + (f o 1)?gr(nx X, nx ¥) )

for everyX, Y of M, andx is the symbol for the tangent map.

It follows that RadTM of M still hasrankr but dim(M) = n + m and dim(S(TM)) =
n +m — r. In particular, if ¥ is a globally null manifold and is a complete Riemannian
manifold, then we have the following result (the proof is similar to the proof of Theorem 3

in [7]).

Theorem 2. LetM = (N x ¢ F, g) be a light-like warped product manifold of a globally
null manifold(N, gy) and a complete Riemannian manifd@ld, gr) of dimensions n and
m, respectively. Then, the following assertions are equivalent
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(a) The screen distributio§(TM) is integrable

(b) M = L x M’ is a global null product manifold, where L & onedimensional inte-
gral manifold of the global null curve C in M an@/’, g’) is a complete Riemannian
hypersurface of M which is a triple warped product

M=LxBx;F, M =(Bx;F,g), (10)

where(B, gp) is a complete Riemannian hypersurfacé\Vof= L x B.
(c) S(TM) is parallel with respect to the metric connection on M

Example4. Let R{*! be a Lorentz space with the metgigiven by

d
gr,y) = —x%%+ ) xly
i=1

with respect to a coordinate systent, . .., x?). Consider a smooth functiofi: D — R,
whereD is an open set oR“. Then
M={x%.. . x" e R{Y X0=riet o xD), (11)

is a hypersurface 0?‘1”1 which is called aMonge hypersurfacé et natural parameteriza-
tion on M be given by

xozf(vo,...,vd_l), xotl — o, ac{0,...,n—1}.
Hence, the natural frames field a# is globally defined by
e = f;Ml&xo +0pt+1, a€{0,....,d—1}.
Then, it follows thafTM* is spanned by a global vector
d
E=00+ ) [flid. (12)
i+1

We know from(1) that M is light-like if and only if TM- = RadTM. This means thag,
defined by(12), is a null vector field. Hence, we may state

Proposition 2. A Monge hypersurface M, given 1), is light-like if and only if the
function f is a solution of the differential equati@j.lzl(f);l.)2 =1

Proposition 3. The screen distribution of a light-like Monge hypersurface Mfifl, given
by (11), is integrable

Proof. Choose a null transversal vector field (which is not tangerjagiven by V. =
1/2){—0,0 + Z;jzl f;,. d,:}. It follows thatg(&, V) = 1. LetV be the Levi-Civita con-

nection, with respect to the Minkowski metrig on Ri’*l. Then, for any two vectors
X,Y € I'(S(TM)), the Lie bracketX, Y] € I'(S(TM)). Indeed

g([X. Y], V) =g(VxY — VyX,0,0) = —{g(X, Vyd,0) — g(¥, Vx0,0)} = 0.
Hence,S(TM) is integrable which completes the proof. O
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To relate above example with this section, weRét“l admit a globally defined time-like
vector field, which means it is a time orientable Minkowski space—time. This further means
thatR‘l“rl is a globally hyperbolic space—time. Byoposition 3with the equivalent asser-
tions (a) and (b) offheorem 2we conclude thaM = L x M’ is aglobally null Monge
hypersurfacef a Minkowski space—tim@f”, whereM’ is a complete Riemannian man-
ifold. FurthermoreM can be seen as a triple warped product manifold, as explained above,
if we setd =n + m.

The Ricci tensor o is Ric(X, Y) = tracdZ — R(X, Z)Y}, for vector fieldsX, Y, Z
of M, whereR(X, Z)Y is the curvature tensor @ . With respect to a natural frames field
{§ =0,0,0,1,...,0,s1}, we have

Ric(X,Y) = g®g(R(dw,X)dus,Y) (a,b=1,...,n—1)

13
- RIC(X.Y), (13)

where Ri¢denotes the Riccitensor 8f’ andX’, Y’ € M'. In terms of a quasi-orthonormal
Frenet framdé&, Wy, ..., W,_1} along a null curveC (seekEg. (7)), the degenerate metric
g and(13) are expressed by

n—1
§(X.Y) =) g(X, Wa)g(Y, W),
a=1
n—1
RIC(X,Y) = g(R(Wa, X)Wy, ¥) = Ric (X', Y'). (14)
a=1

Using(13) andTheorem 2we have the following important result.

Proposition 4. Let (M, g) be a globally null manifold, withM’ its complete Riemannian
hypersurface. Then, the metric g and the Ricci tensor of M can be determined from a set of
data specified entirely om’. Also, M andM’ have same Ricci tensors. Moreover, if M is a
globally null warped product manifold, then the geometry of M reduces to the Riemannian
geometry of its warped product hypersurfadé = (B x s F, g'), as defined by10).

Forexample, leM be a globally null Monge hypersurface, definedby), of a Minkowski
space—timeRf*l. Following two results hold (for proof s48] WhereR‘l1 case is discussed
since the general case is very lengthy).

() LetM’ be any leaf of the screen distribution &f and R, R’ the curvature tensors of
M andM’, respectively. Thenk = (1/2)R’.

(b) M is (1) flat, (2) totally geodesic, (3) totally umbilical, (4) minimal if and onlyf is
so immersed as a submanifoldbf“.

In other words M’ is an invariant hypersurface @f. This means that any tensor (in-
cluding the degenerate metgg or geometric object oM can be determined from a set of
data specified entirely on its Riemannian hypersurfd¢eThus, one can essentially do all
the analysis on the complete Riemannian hypersui&icef M. Moreover, we have

(1) The null leavesV x ¢, g € F, of warped producM, can be induced to the space-like
leavesB x ¢, and are totally geodesic 1.
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(2) The fibres(po, p) x F, po € L andp € B can be induced to the space-like fibres
p x F, and are totally umbilical ir1.

(3) Foreachp, g) € M’,theinduced leaB x ¢ and the induced fibrg x F are orthogonal
at(p, q).

(4) The gradient of the lifk o 7 of a smooth functiork € N is the lift to M of the gradient
of h on its induced Riemannian manifokl

In general, for a covariant tensdre N, its lift 7 e M is the pullbackr* (T') under the
mapn : M — B C N.Thisiswhy, evenifthe metrigy of N is degenerate, all tensors and
geometric objects and their pullback are with respect to the induced Riemanniangpetric
of B. The vectors tangent to leaves and fibres are chtbeidontalandvertical, respectively.
The lift to M of the Hessian of a smooth functighon N, denoted byH /, agrees with the
Hessian of the liftf o 7 on the horizontal vectors d8. We denote Ri€ for the pullback
by 7 of Ric’ and similarly for Ri¢".

Proposition 5. LetM = L x B x ¢ F be an(n + m)-dimensional triple warped product
manifold withdim(F) = m > 1. Then

(1) Ric(¢, £) = Ric(¢, X) = Ric(X,U) =0,& € L,
(2) Ric(X,Y) =Rid(X,Y) =Ric®(X,Y) — (m/f)H/ (X, Y),
(3) Ric(U, V) = Ric" (U, V) — (U, VI{AS/f + (m — D(V £, V f)/f?),

whereAf = tracgH/) is the Laplacian of fV f = grad f), X, Y horizontal and U,V
vertical vector fields

Proof. UseProposition 4and follow Corollary 7.43 if11]. O
We use the following identifications @f, (M) for anyx = (po, p,q) € M.

To(L x BxyF)=T.(L x Bx F)=Ty,(L) x Ty(B) x T,(F),
projected -~

T.(LxBxfF)———=TpgBxr F)=Tp (B x F)
AFrenetframdé, Wy, ..., W,_1} onT,, ,» N (seeEq. (7) is identified to an orthonormal
basis{W,} (@ = 1,...,n — 1) onT,B. Any horizontal vectoX (, » ) € M is identified
to a horizontal vectoX , , = (X,,0,) € B. Similar notations follow for vertical vectors
and tensors. We deno®® the pullback byr of the scalar curvature a8 and similar for
S¥. For the degenerate metigg at a pointx = (po, p, ¢) € M, we have

projected , _
Ex —> & (p.q) — (gpv gq)v gB(p,q) = (gpv Oq)s gF(p,q) = (0[7’ gq)a

whereg’, gp andgr are Riemannian metrics o', B and F, respectively.

Proposition 6. Suppose S is the scalar curvature of a triple warped product manifold
M =L x B xy F,withdim(F) =m > 1. Then
s” Af (VL£VS)
S=8=8+= —2m=— —m@m - H)———",
f? f f?

whereS’ is the induced scalar curvature 8’ = (B x ¢ F, g').

(15)
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Proof. Let {§; W,} be a pseudo-orthonormal basis @, 4) (L x B) so that{W,} is an
orthonormal basis fof, B. Then, by isomorphisr{W, = (W,, 0,)} is an orthonormal set
in T(p,q)(B x ¢ F). Choose a seftW;} of m vectors onT, F' such that(&; W,; W;} forms
a pseudo-orthonormal basis f?ﬂ(po,p,q) M. Thus,{W,; W;} is an orthonormal basis for
T(p.q)- Since

gr(Wi, Wi) = f2(Wi, Wi) = gr(FW;, fW) = 1,

we conclude thaffW;} is an orthonormal basis fdf, . Using Proposition 3for eacha
and each, we get

RiC(Wav Wa) = RiC’(Wa, Wa) = RiCB(V_Vav Wa) - %Hf(wav Wa)y

(V/, Vf)}
f
Hence, using (§,&) =0, g(W,, W,) = g(W;, W;) = 1, we get

Ric(W;, W;) = Ricl (W;, W) — f |:Af +(m—1)

projected
S(po, p.9)——>5'(p.q) = Rua RQ<a <n+m)
= Ric(W,, W,) + Ric(W;, W)
SF A VFV
= SB+—2—2m—f—m(m—l)#. O
S b S

4. Constant scalar curvature

In this section, we deal with the following fundamental problem.

Given a fibre F, of M, with constant scalar curvature, find a warping function f on its
base manifold. x B such that the degenerate warping metric g admits a constant scalar
curvatureonM = (L x B x¢ F, g).

We restrict to diniM) = n = 4 since this case has an interplay with some known exact
solutions of the static vacuum Einstein equations and the event horizon or boundary of a
black hole in general relativity. For this case, either (1) @n= 1 and dim(F) = 2 or
(2) dim(B) = 2 and dim{F) = 1. We deal with both these subcases separately. Using
the material of previous two sections, we first work on the Riemannian warped product
manifold (M’, g’) and then show how to glug with the degenerate metricof M.

Casel. dim(B) =1 and dimF) = 2.

Theorem 3. LetM = (L x B x ¢ F, g) be afour-dimensional globally null warped product
manifold B = (a, b) an open connected subset of real line with positive definite nttic
and —oco < a < b < +o00 and the fibre space F be of constant scalar curvatugg 0.
Then, g admits the following warping functioif$r) for which M has a constant scalar
curvature k

() k>0, f(r):\/%[tanz(j:(%)l/zr+cl)+1]7l/2, ¢>0,
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(i) k=0, f(r)= i(\@)qu, c>0,

(i) k<0, f(r)=c1 eXp(\/%r) o eXP(— %"V)'

wherec; is a constant such that(r) is real and positive

Proof. Let f(r) = u?3. Then,Af = f” and(V f, Vf) = (f')2. Using this with§? =
0, SF = candS = k in (15), we obtain

u” + 3ku— 3cu ' =0 (16)

Letu’ = y sothatd/dr = u”. Using this in(16), separating variables and then integrating
both sides, we obtain

d
y = +(3/8)Y2uv/3cu43 — k = d—”.
'a

Therefore:

du 3\ 1/?
M (_) dr.
u~/3cu4/3 —k 8

Following are three cases of the integral of above equation:

K\ 12
k>0, vzzktan2<i<6) r+61>, k=0, f(r)=:t<\/§>r+01,

v — A~k ( k)l/z
YN =4 (=2) n
v+ =k 6

where we seb? = 3cu~#/3 — k. From above three equations the results of this theorem
follow easily for the case of Riemannian warped product manifafd, g’). To complete

the proof, we now show how to glyg with the degenerate metricof M. It follows from

the Proposition 4that the scalar curvatures 8f’ and M are same. The warping function
fp € B can be glued with the warping functiofy,, ,) = (0p,, fp) € L x B. Based on
information fromSection 2 the Riemannian metrig’ can be glued with the degenerate
metricg, of M, as follows:

= 011 013
031 g )

whereg' (X, Y) = gg(mx X, mx¥) + (f 0 1)2gr(nx X, nxY). O

k<0, In

Corallary. If ¢ = 0, then following are the warping functiong(r) for which M has a
constant scalar curvature k

2/3
() k>0, f@r)= |:c1 cos( 3—é‘r> + ¢28in ( 3—é‘r>] )
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(i) k=0, f(r)=(c1r +c2)?3,
2/3

(i) k<0, f(@)= [cl exp(@r) +c2 exp(—\/%rﬂ ,

wherec, andcz are constants such that(r) is real and positive

Physical model 1. Let M = (L x M’, g) be a four-dimensional globally null manifold,
with (M’, g') its complete space-like hypersurface. Also,(let, 3) be a four-dimensional
globally hyperbolic space—time manifold of general relativity. By definitignhas a com-
plete space-like hypersurfadé (called Cauchy surfacesuch that = R x H. In the
following we show, by means of a physical example, tHat a warped product manifold
of Case 1and the setM, M’, M} of these three manifolds has the following interplay.

(M,8)>(M' =B x;F,g)yc(M=RxH,3), (17)

where(H = B x i F. gn) and f is a warping function ok x B.

Example5. Let (M, g) be the Schwarzschild space-time with the metric
g=—Ad*+ A ) dr® +r2dR5, A()=1-2mrt >0,

wheres? is totally geodesic 2-sphere of radius 2ndm is positive mass. This metric rep-
resents the most important non-trivial solution of the static vacuum Einstein field equations.
It is well known thatM is a globally hyperbolic manifolB]. To relate this wittEq. (17)

we consider the following conformal deformation mefgig defined by

gu = A(r)gn = dr® + A(r)r? de3.

If we setB a one-dimensional space with metriccand $% a two-dimensional fiber space
F of M, then using17) we conclude that the Schwartzchild space-tivhéas a complete
Cauchy hypersurface

(H=Bx;F.zgm, f=/fJA®),

and it has an interplay with a four-dimensional globally null maniféddlIt is well known

that static solutions of space—times are closely connected with an open Riemannian 3-mani-
fold containing a 2-sphere, occurring at the event horizon or the boundary of a black hole in
general relativity. This physical relation is apparent in above example and, more generally,
in many solutions of the static vacuum equations of asymptotically flat space—times, which
have 2-spheres near infinity. Relevant to this paper, we have further demonstrated, through
Eq. (17) that 2-sphere can act as a common link between the three manifglag and

M, relating the geometries of globally null and the globally hyperbolic manifolds. Finally,

to relate this example witiiheorem 3consider the case= 0 (others are similar) so that

fr)= :|:<\/g>r+cl.

In this example F = S? whose scalar curvature ig4m? and

f=rv1-—2mr1
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Matching f = f, andc = 1/4m?, we obtain
(1 - 8m?)r? + (16m® + 4v/2ma)r + 8mE =0,

wherecs is such that has real solutions from above equation.

Remark 2. For similar study on higher dimensional Riemannian and semi-Riemannian
warped product manifolds, we suggest the works of Dobarro—[@jzand Ehrlich et al.
[9], respectively.

Case2. dim(B) = 2 and dim(F) = 1.

Here we follow Yamabé¢12] for the existence of constant curvature metrics on a three-
dimensional compact Riemannian manifeld’ = B x s F, g’), with dim(B) = 2, and,
then follow Anderson’g1] recent work on their relation with the static vacuum Einstein
equations. We study two specific subcases and glue the degenerate gneftrid/ =
L x M, g) with g’. Denote byM the space of all smooth Riemannian metrics dh
and My C M of metrics satisfying vgl M’ = 1. Define the total scalar curvature or
Einstein—Hilbert actior§ : M’ — R by

S(g)=v 13 /M/ sMdv,, (18)

wheres™' is the scalar curvature of’, dV, the volume element andthe volume ofM’.
The critical points ofS areEinstein metricsMoreover, only in dimension 3 these Einstein
metrics are of constant scalar curvature. There is a well known procedure to obtain Einstein
manifolds. Following Yamabgl2], supposed’] is a conformal class of any metri¢ €
M3. Then there exists a metrice M3 which achieves its infimum[g’] = Sljg1nm; -
Such metrics are calletamabe metricdHowever, there are restrictions on the existence of
Yamabe metrics. Denote y(M') = sup(u[g'])¢c,, whereCy is the subset of unit volume
Yamabe metrics. I&6(M’) < 0, it has been proved by BesgY that any Yamabe metric
go € C1 such thatSé‘g’ = o(M’) is Einstein. Otherwise, this problem still remains open.
Under these restrictions, it is reasonable to say that there exists a four-dimensional globally
null manifold M whose three-dimensional compact Riemannian hypersufe¢gg’) is
an Einstein manifold with a constant curvatérandg’ is a Yamabe metric. Then, it follows
from Proposition 4hat M is also of constant scalar curvatireNow we show, that for two
specific subcases, @fase 2there exists a warping functiofi on the base manifol® of
(M" = B xy F, g’), such that the metrig has a constant scalar curvaturedn

Subcase ()M’ = $% andF = s*.

Let{g;} be amaximum sequence of unitvolume Yamabe metridd oit has been shown
by Anderson[1] that the degenerations of such a sequence are described by solutions to
the static vacuum Einstein equations. Consider a specific class of such solutions, known as
Weyl solutions, wheréM’, g’) is a warped product dfase 2and

M =Bx;St, g =gp+ f2do? (19)

where (B, gp) is a Riemannian surface (s for details) andf is a positive function
on B. Let there be symmetry o® such thatf = f(r) with respect to a coordinate
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system(r, ¢) at any pointp € B. This is possible, in particular, if we s’ = 3 so
that B is a two-dimensional solid torus. Thef can be seen as the union of two solid
tori B x S, glued along the torus boundafyB) by interchanging the two circles in
3(B). Assume that outside a compact s¢t,s isometric to a rank 2 hyperbolic cusp,

so that in particularf = f(r) = e for larger of S2. For the existence of such a
metric g’ see Theorem 4.32 if#]. Anderson[1] has shown that such a warped product
metric g’ is invariant under thes* action onB x S and the scalar curvature of’ is

—6. Therefore, based @froposition 2the scalar curvature of the globally null manifold

M is also—6 and its degenerate metrgccan be glued with the Riemannian metgicas
explained in the proof of heorem 4 Furthermore, there are conditions (discussed jij

under which the degeneration corresponds to non-trivial vacuum solutions of the Einstein
equations of four-dimensional space—time manifolds of general relativity. Examples are
several asymptotically flat space—times (including the Schwarzchild space-time) which
have 2-spheres near infinity. Thus, we have the following physical mod€lgee 2

Physical model 2. Let M = (L x M’, g) be a four-dimensional globally null manifold,
with (M’, g’) a warped product ofase 2and of the form(19), such that\/’ = $3 and B

is a solid torus. Also, letM, g) be a class of asymptotically flat space—times which have
2-spheres near infinity. Then, the set of these three manifdfdg/’, M} has the following
interplay

(M,2) D ($*x; S, ¢y C (M, 3),
whereM can have a suitable warped product structure.
Subcase (i)S¥ =0onF.

Theorem4. LetM = (L x B x ¢ F, g) be afour-dimensional globally null warped product
manifold (B, gz) a Riemannian surface with scalar curvatuf€ and F = (a, b) an open
connected subset of real line with positive definite mettitand —co < a < b < +o0.

Then, the metric g admits infinitely many warped functions for which M has constant scalar
curvature

Proof. Following Ehrlich et al[9], we let H; 2(B) denote the Sobolev space of functions
on B whose first order derivatives are in the norm spagéB) and L is the differential
operator orH (B) such thatL.(f) = —Af + (1/2)S® f. Consider the first eigenvalueon

L given by

. fL(fHydv |AfI2dV + (1/2) [, SB f2dV
A= mlnf¢0€H(3)% = MiNfocH(B) fB /B fz deB '
Seti = (1/2)k. Then
L(f) =) = 3kf (20)

implies thatf is a eigenvalue function of the operatorKazdan—Warne10] have shown
that such an eigenfunction is never zero, positive and smooth. Thus, we assume that
f > 0 on B. Finally, it follows from Eq. (15) with dim(F) = m = 1,8 = ¢ =0
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and above that
Af +iGk—sBf =0

Therefore, there exists a warped functigrsuch that the warped metric, of M’, has
the constant scalar curvaturelt follows from (20) that if f is an eigenfunction, theaf is
also an eigenfunction for any real positive numberhus, there are infinitely many warped
metrics all of which have constant scalar curvatur€inally, based ofProposition 4k is
also scalar curvature of the globally null manifalfl and its degenerate metriccan be
glued with the Riemannian metri¢ as explained in the proof Gtheorem 3 O
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